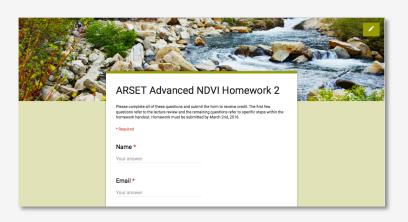


ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Creating and Using Normalized Difference Vegetation Index (NDVI) from Satellite Imagery

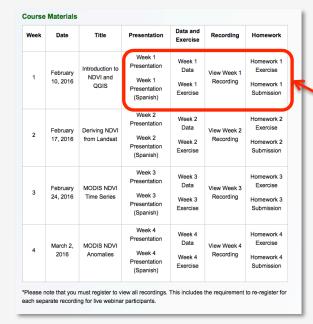
Instructors: Cindy Schmidt and Amber McCullum


Week 2

Course Structure

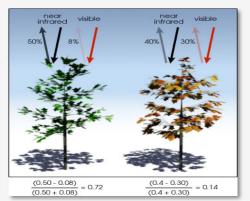
- One lecture per week every Wednesday from February 10 to March 2 at 12:00-1:00pm EST (-05:00 UTC)
 - Lectures
 - In-class exercise
 - Q&A
 - Homework exercises
- Webinar recordings, PowerPoint presentations, in-class exercises, and homework assignments can be found after each session at:
 - http://arset.gsfc.nasa.gov/ecoforecasting/webinars/advanced-webinar-creating-and-usingnormalized-difference-vegetation-index
- Q&A: Following each lecture and/or by email (<u>cynthia.l.schmidt@nasa.gov</u>) or (<u>amberjean.mccullum@nasa.gov</u>)

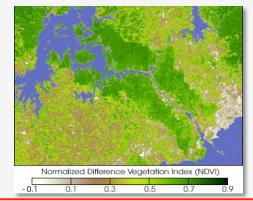
Homework and Certificates


- Homework
 - Hands-on exercise each week
 - Answers must be submitted via Google Form
- Certificate of Completion:
 - Attend all 4 webinars
 - Complete all 4 homework assignments by the deadline (access from ARSET website)
 - Week 2 Deadline: Wednesday March 2nd
 - You will receive certificates approximately 2 months after the completion of the course from: marines.martins@ssaihq.com

Accessing Course Materials

http://arset.gsfc.nasa.gov/ecoforecasting/webinars/advanced-webinar-creating-and-using-normalized-difference-vegetation-index

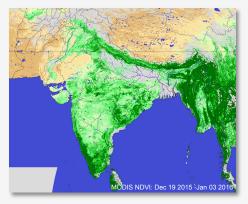


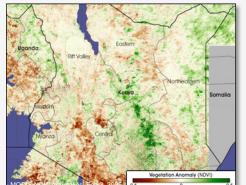

Course materials are provided here using each specified link and will be active after each week

Course Outline

Week 1

Overview of NDVI and QGIS

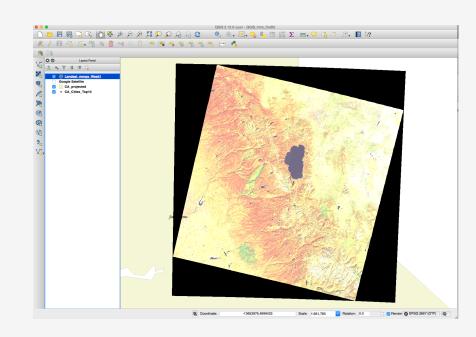



Week 2

NDVI with Landsat

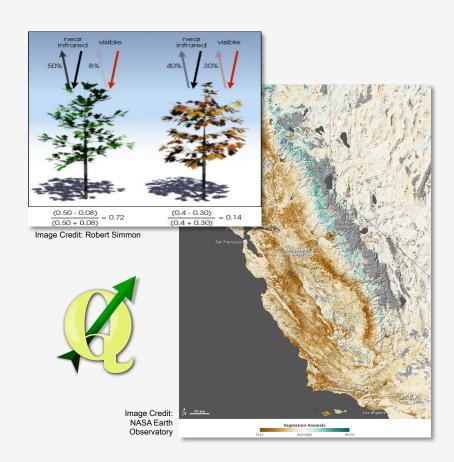
Week 3

MODIS NDVI Time Series



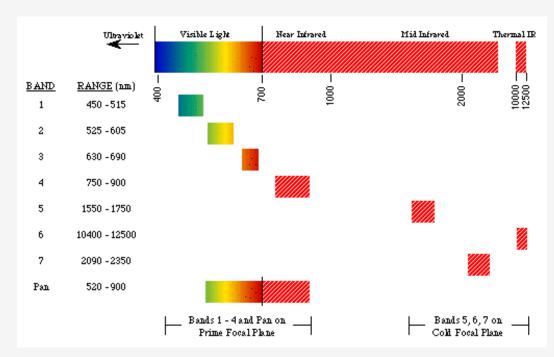
Week 4

MODIS NDVI Anomaly Mapping


Week 2 Agenda

- Review of Landsat Bands
- Acquiring Landsat Images
- In-class exercise: Deriving NDVI from Landsat using QGIS
- Q&A

Week 1 Review

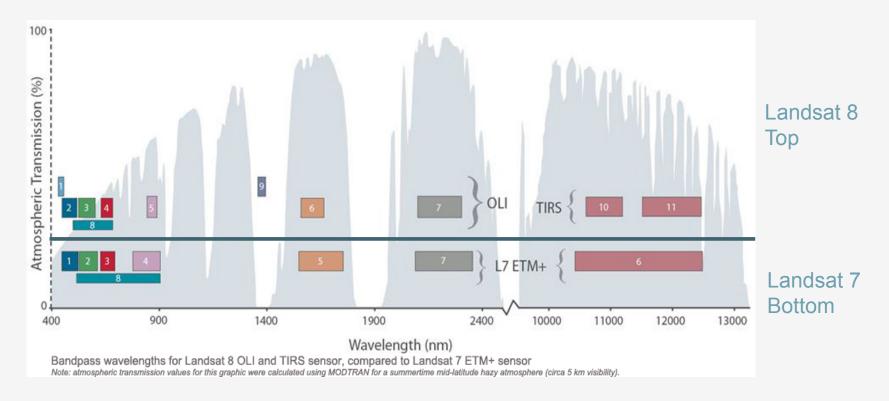

- What is NDVI
- NDVI Applications and Examples
- NDVI Anomalies
- QGIS Introduction

Spectral Characteristics of Landsat

- Landsat instruments measure primarily light that is <u>reflected</u> from Earth's surface (with one exception)
- Landsat instruments are designed to detect visible and infrared (near and mid) wavelengths.

Landsat bands of ETM+ (Landsat 7)

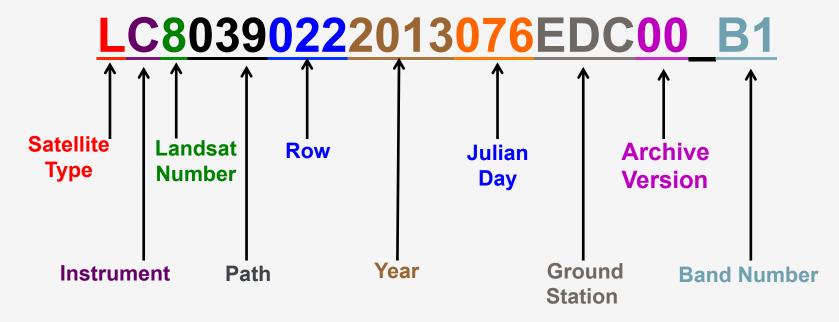
Characteristics of Landsat 4, 5, and 7


Bands	Wavelength (micrometers)	Resolution (m) Landsat 4-5 (TM)	Resolution (m) Landsat 7 (ETM+)
Band 1-Blue	0.45-0.52	30	30
Band 2 Green	0.52-0.60	30	30
Band 3- Red	0.63-0.69	30	30
Band 4-Near Infrared	0.76-0.90	30	30
Band 5- Shortwave Infrared 1	1.55-1.75	30	30
Band 6- Thermal Infrared	10.40-12.50	120	60
Band 7- Shortwave Infrared 2	2.08-2.35	30	30
Band 8-Pan	0.52-0.90		15

Characteristics of Landsat 8

Bands	Wavelength (micrometers)	Spatial Resolution (meters)
Band 1-Coastal aerosol	0.43-0.45	30
Band 2- Blue	0.45-0.51	30
Band 3- Green	0.53-0.59	30
Band 4- Red	0.64-0.67	30
Band 5- Near Infrared	0.85-0.88	30
Band 6- SWIR 1	1.57-1.65	30
Band 7- SWIR 2	2.11-2.29	30
Band 8-Panchromatic	0.50-0.68	15
Band 9-Cirrus	1.36-1.38	30
Band 10- Thermal Infrared 1	10.60-11.19	100*
Band 11- Thermal Infrared 2	11.50-12.51	100*

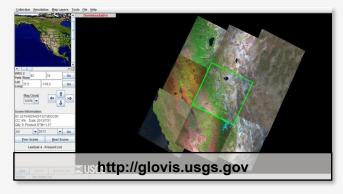
^{*} Resampled to 30 meters


Landsat 7 vs. Landsat 8

Landsat Bands for NDVI

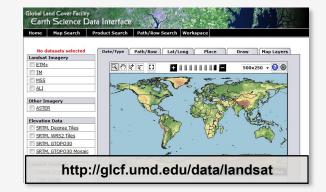
Wavelengths	Landsat 8 Bands	Landsat 4,5, 7 Bands
Coastal aerosol	Band 1	
Blue	Band 2	Band 1
Green	Band 3	Band 2
Red	Band 4	Band 3
Near- Infrared	Band 5	Band 4
SWIR 1	Band 6	Band 5
SWIR 2	Band 7	Band 7
Panchromatic	Band 8	Band 8 (L7)
Cirrus	Band 9	
Thermal Infrared 1	Band 10	Band 6
Thermal Infrared 2	Band 11	

Landsat Naming Convention



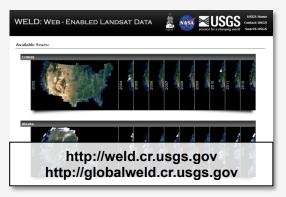
*Instrument can be C: Combined, OLI: Operational Land Imager, or TIS: Thermal Infrared System

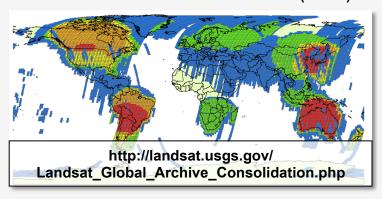
Where to Obtain Landsat Images

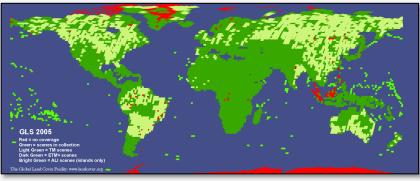

The LandsatLook Viewer

GloVis

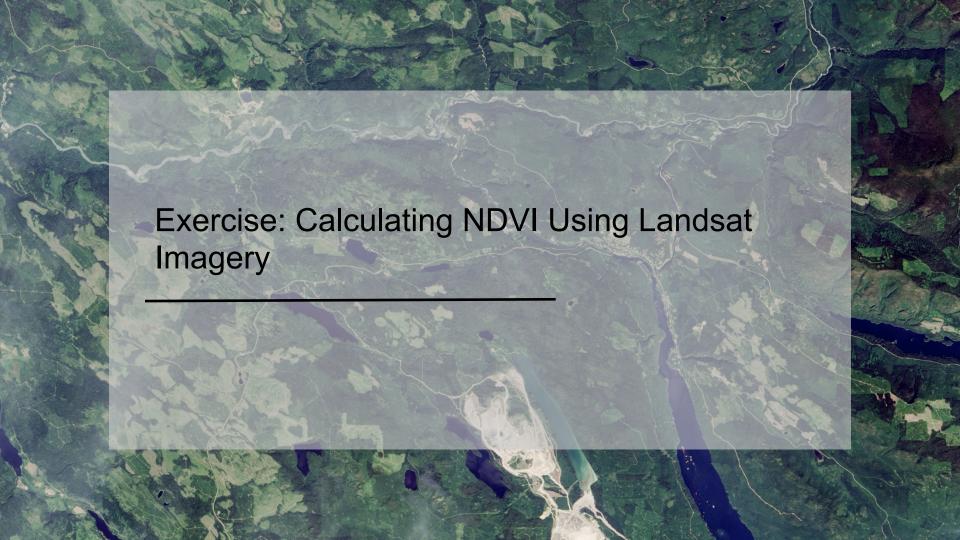
Global Land Cover Facility




Earth Explorer


Where to Obtain Landsat Images

WELD


Landsat Global Archive Consolidation (USGS)

Global Land Survey

- Not a data portal, but a global collection of cloud free Landsat images from 1975-2008.
- Time series include (GLS 1975, GLS 1990, GLS 2000, GLS 2005, GLS 2010)
- Acquire GLS datasets through Earth Explorer, GloVis, and GLCF

Contacts

- ARSET Land Management and Wildfire Contacts
 - Cynthia Schmidt: <u>Cynthia.L.Schmidt@nasa.gov</u>
 - Amber McCullum: <u>AmberJean.Mccullum@nasa.gov</u>
- General ARSET Inquiries
 - Ana Prados: aprados@umbc.edu
- ARSET Website:
 - http://arset.gsfc.nasa.gov/

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Thank You

Next Week:

MODIS NDVI Time Series